
EXPLOITING SYMMETRY IN TENSORS FOR HIGH
PERFORMANCE

MARTIN D. SCHATZ† , TZE MENG LOW† , ROBERT A. VAN DE GEIJN†‡ , AND

TAMARA G. KOLDA§

Abstract. Symmetric tensor operations arise in a wide variety of computations. However, the
benefits of exploiting symmetry in order to reduce storage and computation is in conflict with a desire
to simplify memory access patterns. In this paper, we propose Blocked Compact Symmetric Storage
wherein we consider the tensor by blocks and store only the unique blocks of a symmetric tensor.
We propose an algorithm-by-blocks, already shown of benefit for matrix computations, that exploits
this storage format. A detailed analysis shows that, relative to storing and computing with tensors
without taking advantage of symmetry, storage requirements are reduced by a factor O(m!) and
computational requirements by a factor O(m), where m is the order of the tensor. An implementation
demonstrates that the complexity introduced by storing and computing with tensors by blocks is
manageable and preliminary results demonstrate that computational time is indeed reduced. The
paper concludes with a discussion of how the insights point to opportunities for generalizing recent
advances for the domain of linear algebra libraries to the field of multi-linear computation.

1. Introduction. A tensor is a multi-dimensional or m-array. Tensor computa-
tions are increasingly prevalent in a wide variety of applications [15]. Alas, libraries
for dense multi-linear algebra (tensor computations) are in their infancy. The aim of
this paper is to explore how ideas from matrix computations can be extended to the
domain of tensors.

Libraries for dense linear algebra (matrix computations) have long been part of
the standard arsenal for computational science, including the Basic Linear Algebra
Subprograms interface [16, 10, 9, 12, 11], LAPACK [2], and more recent libraries with
similar functionality, like libflame [29, 25], and the BLAS-like Interface Software
framework (BLIS) [26]. For distributed memory architectures, the ScaLAPACK [8],
PLAPACK [24], and (more recently) Elemental [20] libraries provide most of the
functionality of the BLAS and LAPACK. High-performance implementations of these
libraries are available under open source licenses.

For tensor computations, no high-performance general-purpose libraries exist.
The MATLAB Tensor Toolbox [4, 3] defines many of the kernels (i.e., the inter-
face) that would be needed by a library for multilinear algebra, but does not have any
high-performance kernels nor special computations or data structure for symmetric
tensors. The Tensor Contraction Engine (TCE) project [6] focuses on sequences of
tensor contractions and uses compiler techniques to reduce workspace and operation
counts. The very recent Cyclops Tensor Framework (CTF) [23] focuses on exploit-
ing symmetry in storage for distributed memory parallel computation with tensors,
but does not investigate the sequential libraries that will invariably be needed on the
individual nodes.

In a talk at the Eighteenth Householder Symposium meeting in Tahoe City, CA
(2011), Prof. Charlie Van Loan stated “In my opinion, blocking will eventually have
the same impact in tensor computations as it does in matrix computations.” This pa-
per provides early evidence in support of this statement. The approach we take in this

†Department of Computer Science, The University of Texas at Austin, Austin, TX.
Email: martin.schatz@utexas.edu.
‡Institute for Computational Engineering and Sciences, The University of Texas at Austin,

Austin, TX. Email: rvdg@cs.utexas.edu.
§Sandia National Laboratories, Livermore, CA. Email: tgkolda@sandia.gov.

1

ar
X

iv
:1

30
1.

77
44

v1
 [

m
at

h.
N

A
]

 3
1

Ja
n

20
13

paper heavily borrows from the FLAME project [25]. We use the change-of-basis op-
eration, also known as a Symmetric Tensor Times Same Matrix (in all modes) (sttsm)
operations [4], to motivate the issues and solutions. We propose algorithms that re-
quire minimal computation by computing and storing temporaries. Additionally, the
tensors are stored by blocks, following similar solutions developed for matrices [17, 22].
The algorithms are reformulated to operate with these blocks. Since we need only
store the unique blocks, symmetry is exploited at the block level (both for storage and
computation) while preserving regularity when computing within blocks. The paper
analyzes the computational and storage costs, demonstrating that the simplicity need
not adversely impact the benefits derived from symmetry. An implementation shows
that the insights can be made practical. The paper concludes by listing opportunities
for future research.

2. Preliminaries. We start with some basic notation, definitions, and the mo-
tivating tensor operation.

2.1. Notation. In this discussion, we assume all indices and modes are num-
bered starting at zero.

The order of a tensor is the number of ways or modes. In this paper, we deal only
with tensors where every mode has the same dimension. Therefore, we define R[m,n]

to be the set of real-valued order-m tensors where each mode has dimension n, i.e., a
tensor A ∈ R[m,n] can be thought of as an m-dimensional cube with n entries in each
direction. As the order of a tensor corresponds to the number of ways or modes of a
tensors, we sometimes refer to an order-m tensor as an m-way tensor.

An element of A is denoted as αi0···im−1 where ik ∈ { 0, . . . , n− 1 } for all k ∈
{ 0, . . . ,m− 1 }. This also illustrates that, as a general rule, we use lower case Greek
letters for scalars (α, χ, . . .), bold lower case Roman letters for vectors (a,x, . . .), bold
upper case Roman letters for matrices (A,X, . . .), and upper case scripted letters for

tensors (A,X, . . .). We denote the ith row of a matrix A by âT
i . If we transpose this

row, we denote it as âi.

2.2. Symmetric tensors. A symmetric tensor is a tensor that is invariant under
any permutation of indices.

Definition 1 (Symmetric tensor). A tensor A ∈ R[m,n] is symmetric if its
entries remain constant under any permutation of the indices, i.e.,

αi′0···i′(m−1)
= αi0···i(m−1)

∀ij ∈ { 0, . . . , n− 1 } for j = 0, . . . ,m− 1, and π ∈ Πm,

where i′ is result of applying the permutation π to the index i, and Πm is the set of
all permutations of the set { 0, . . . ,m− 1 }.
For example, an order-2 symmetric tensor is nothing more than a symmetric matrix.
Similarly, an example of a symmetric order-3 tensor is a tensor A ∈ R[3,n] with
entries that satisfy αi0i1i2 = αi0i2i1 = αi1i0i2 = αi1i2i0 = αi2i0i1 = αi2i1i0 for all
i0, i1, i2 ∈ { 0, . . . , n− 1 }.

Since most of the entries in a symmetric tensor are redundant, we need only store
a small fraction to fully describe and compute with a given tensor. Specifically, the
number of unique entries of a symmetric tensor A ∈ R[m,n] is [5](

n+m− 1

m

)
≈ nm

m!
+O(nm−1).

Hence, we can reduce the storage by approximately m! by exploiting symmetry.

2

2.3. The sttsm operation. The operation used in this paper to illustrate issues
related to storage of, and computation with, symmetric tensors is the change-of-basis
operation

C := [A;X, · · · ,X︸ ︷︷ ︸
m times

], (2.1)

where A ∈ R[m,n] is symmetric and X ∈ Rp×n is the change-of-basis matrix. This is
equivalent to multiplying the tensor A by the same matrix X in every mode. The
resulting tensor C ∈ R[m,p] is defined elementwise as

γj0···jm−1 :=

n−1∑
i0=0

· · ·
n−1∑

im−1=0

αi0···im−1βj0i0βj1i1 · · ·βjm−1im−1 .

where jk ∈ {0, . . . , p − 1} for all k ∈ { 0, . . . ,m− 1 }. It can be observed that the
resulting tensor C is itself symmetric. We refer to this operation (2.1) as the sttsm

operation.

3. The Matrix Case. We will build intuition about the problem and its solu-
tions by first looking at order-2 symmetric tensors.

3.1. The operation. Letting m = 2 yields C := [A;X,X] where A ∈ R[m,n] is
an n× n symmetric matrix, C ∈ R[m,p] is a p× p symmetric matrix, and [A;X,X] =
XAXT . For m = 2, (2.1) becomes

γj0j1 = x̂T
j0Ax̂j1=

n−1∑
i0=0

χj0i0(Ax̂j1)i0 =

n−1∑
i0=0

χj0i0

n−1∑
i1=0

αi0i1χj1i1

=

n−1∑
i0=0

n−1∑
i1=0

αi0i1χj0i0χj1i1 . (3.1)

3.2. Simple algorithms. Based on (3.1), a naive algorithm that only computes
the upper triangular part of symmetric matrix C = XAXT is given in Figure 3.1 (left),
at a cost of approximately 3p2n2 floating point operations (flops). The algorithm to its
right reduces flops by storing intermediate results and taking advantage of symmetry.
It is motivated by observing that

XAXT = X AXT︸ ︷︷ ︸
T

=

 x̂T
0
...

x̂T
p−1

 A
(
x̂0 · · · x̂p−1

)︸ ︷︷ ︸(
t̂0 · · · t̂p−1

) =

 x̂T
0
...

x̂T
p−1

(t̂0 · · · t̂p−1

)
,

(3.2)

where t̂j = Ax̂j ∈ Rn and x̂j ∈ Rn (recall that x̂j denotes the transpose of the jth
row of X). This algorithm requires approximately 2pn2 + p2n flops at the expense of
requiring temporary space for a vector t̂.

3

Naive algorithms Algorithms that reduce computation
at the expense of temporary space

A is a matrix (m = 2): C := XAXT = [A;X,X]
for j1 = 0, . . . , p− 1
for j0 = 0, . . . , j1
γj0j1 := 0
for i0 = 0, . . . , n− 1
for i1 = 0, . . . , n− 1
γj0j1 := γj0j1 + αi0i1χj0i0χj1i1

endfor
endfor

endfor
endfor

for j1 = 0, . . . , p− 1

t̂ := t̂j1 = Ax̂j1

for j0 = 0, . . . , j1
γj0j1 := x̂T

j0 t̂
endfor

endfor

A is a 3-way tensor (m = 3): C := [A;X,X,X]
for j2 = 0, . . . , p− 1
for j1 = 0, . . . , j2
for j0 = 0, . . . , j1
γj0j1j2 := 0
for i2 = 0, . . . , n− 1

for i1 = 0, . . . , n− 1
for i0 = 0, . . . , n− 1
γj0j1j2+ :=
αi0i1i2χj0i0χj1i1χj2i2

endfor

. .
.

endfor

for j2 = 0, . . . , p− 1

T(2) := T
(2)
j2

= A×2 x̂
T
j2

for j1 = 0, . . . , j2

t̂
(1)

:= t̂
(1)

j1j2 = T(2) ×1 x̂
T
j1

for j0 = 0, . . . , j1

γj0j1j2 := t̂
(1) ×0 x̂

T
j0

endfor
endfor

endfor

A is an m-way tensor: C := [A;X, · · · ,X]
for jm−1 = 0, . . . , p− 1
. . .

for j0 = 0, . . . , j1
γj0···jm−1

:= 0
for im−1 = 0, . . . , n− 1
. . .

for i0 = 0, . . . , n− 1
γj0···jm−1+ :=

αi0···i2χj0i0 · · ·χjm−1im−1

endfor

. .
.

endfor

for jm−1 = 0, . . . , p− 1

T(m−1) := Tjm−1
= A×m−1 x̂

T
jm−1

. . .

for j1 = 0, . . . , j2

t̂
(1)

:= t̂j1···jm−1
= T(2) ×1 x̂

T
j1

for j0 = 0, . . . , j1

γj0···jm−1
:= t̂

(1) ×0 x̂
T
j0

endfor
endfor

. .
.

endfor

Fig. 3.1. Algorithms for C := [A;X, · · · ,X] that compute with scalars. In order to facilitate the
comparing and contrasting of algorithms, we present algorithms for the special cases where m = 2, 3
(top and middle) as well as the general case (bottom). For each, we give the naive algorithm on the
left and the algorithm that reduces computation at the expense of temporary storage on the right.

4

Relative storage of BCSS n̄ = dn/bAe
2 4 8 16

relative to minimal storage
n(n+ 1)/2

n(n+ bA)/2
0.67 0.80 0.89 0.94

relative to dense storage
n2

n(n+ bA)/2
1.33 1.60 1.78 1.88

Fig. 3.2. Storage savings factor of BCSS when n = 512.

3.3. Blocked Compact Symmetric Storage (BCSS). Since matrices C and
A are symmetric, it saves space to store only the upper (or lower) triangular part
of those matrices. We will consider storing the upper triangular part. While for
matrices the savings is modest (and rarely exploited), the savings is more dramatic
as the tensor order increases.

To store a symmetric matrix, consider packing the elements of the upper triangle
tightly into memory with the following ordering of unique elements:

0 1 3 · · ·
2 4 · · ·

5 · · ·
. . .

 .

Variants of this theme have been proposed over the course of the last few decades
but have never caught on due to the complexity that is introduced when indexing the
elements of the matrix [13, 5]. Given that this complexity will only increase with the
tensor order, we do not pursue this idea.

Instead, we embrace an idea, storage by blocks, that was introduced into our
libflame library [17, 29, 25] in order to support algorithms by blocks. Submatri-
ces (blocks) become units of data and operations with those blocks become units of
computation. Partition the symmetric matrix A ∈ Rn×n into submatrices as

A =


A00 A01 A02 · · · A0(n̄−1)

A10 A11 A12 · · · A1(n̄−1)

A20 A21 A22 · · · A2(n̄−1)

...
...

...
. . .

...
A(n̄−1)0 A(n̄−1)1 A(n̄−1)2 · · · A(n̄−1)(n̄−1)

 . (3.3)

Here each submatrix Aı̄0 ı̄1 ∈ RbA×bA . We define n̄ = n/bA where, without loss
of generality, we assume bA evenly divides n. Hence A is a blocked n̄ × n̄ matrix
with blocks of size bA × bA. The blocks are stored using some conventional method
(e.g., each Aı̄0 ı̄1 is stored in column-major order). For symmetric matrices, the blocks
below the diagonal are redundant and need not be stored (indicated by gray coloring).
Although the diagonal blocks are themselves symmetric, we will not take advantage
of this in order to simplify the access pattern for the computation with those blocks.
We refer to this storage technique as Blocked Compact Symmetric Storage (BCSS)
throughout the rest of this paper.

5

Storing the upper triangular individual elements of the symmetric matrix A re-
quires storage of

n(n+ 1)/2 =

(
n+ 1

2

)
floats.

In constrast, storing the upper triangular blocks of the symmetric matrix A with
BCSS requires

n(n+ bA)/2 = b2A

(
n̄+ 1

2

)
floats.

The BCSS scheme requires a small amount of additional storage, depending on
bA. Figure 3.2 illustrates how the storage needed when BCSS is used becomes no
more expensive than storing only the upper triangular elements (here n = 512) as the
number of blocks increases.

3.4. Algorithm-by-blocks. Given that C and A are stored with BCSS, we
now need to discuss how the algorithm computes with these blocks. Partition A as
in (3.3) and C and X like

C =

 C00 · · · C0(p̄−1)

...
. . .

...
C(p̄−1)0 · · · C(p̄−1)(p̄−1)

 and X =

 X00 · · · X0(n̄−1)

...
. . .

...
X(p̄−1)0 · · · X(p̄−1)(n̄−1)

 ,

where, without loss of generality, p̄ = p/bC, and the blocks of C and X are of size
bC × bC and bC × bA, respectively. Then C := XAXT means that

C̄0 ̄1 =
(
X̄00 · · · X̄0(n̄−1)

) A00 · · · A0(n̄−1)

...
. . .

...
A(n̄−1)0 · · · A(n̄−1)(n̄−1)


 XT

̄10
...

XT
̄1(n̄−1)


=

n̄−1∑
ı̄0=0

n̄−1∑
ı̄1=0

X̄0 ı̄0Aı̄0 ı̄1X
T
̄1 ı̄1 =

n̄−1∑
ı̄0=0

n̄−1∑
ı̄1=0

[Aı̄0 ı̄1 ;X̄0 ı̄0 ,X̄1 ı̄1] (in tensor notation).

(3.4)

This yields the algorithm in Figure 3.3, in which an analysis of its cost is also given.
This algorithm avoids redundant computation, except within symmetric blocks of C,
C̄0 ̄0 . Comparing (3.4) to (3.1) we see that the only difference lies in replacing scalar
terms with their block counterparts. Consequently, comparing this algorithm with
the one in Figure 3.1 (top-right), we notice that every scalar has simply been replaced
by a block (submatrix). The algorithm now requires n× bC extra storage (for T), in
addition to the storage for C and A.

4. The 3-way Case. We now extend the insight gained in the last section to the
case where C and A are symmetric order-3 tensors, before moving on to the general
case in the next section.

4.1. The operation for order-3 tensors. Now C := [A;X,X,X] where A ∈
R[m,n], C ∈ R[m,p], and [A;X,X,X] = A×0 X×1 X×2 X. In our discussion, A is a

6

Algorithm Ops Total # of Temp.
(flops) times executed storage

for ̄1 = 0, . . . , p̄− 1
T
T
0
.
.
.

T
T
n̄−1


︸ ︷︷ ︸

T

:=


A00 · · · A0(n̄−1)
.
.
.

. . .
.
.
.

A(n̄−1)0 · · · A(n̄−1)(n̄−1)


︸ ︷︷ ︸

A


X
T
̄10
.
.
.

X
T
̄1(n̄−1)


︸ ︷︷ ︸

X
T
̄1

2bCn2 p̄ bCn

for ̄0 = 0, . . . , ̄1

C̄0 ̄1 :=
(
X̄00 · · · X̄0(n̄−1)

) TT
0
...

TT
n̄−1

 2b2Cn p̄(p̄ + 1)/2

endfor
endfor

Total Cost: 2bCn2p̄ + 2b2Cn (p̄(p̄ + 1)/2) =
1∑

d=0

(
2bd+1

C n2−d
(p̄ + d

d + 1

))
≈ 2pn2 + p2n flops

Total temporary storage: bCn =

0∑
d=0

(
bd+1
C n1−d

)
entries

Fig. 3.3. Algorithm-by-blocks for computing C := XAXT = [A;X,X]. The algorithm assumes
that C is partitioned into blocks of size bC × bC, with p̄ = dp/bCe.

Algorithm Ops Total # of Temp.
(flops) times executed storage

for ̄2 = 0, . . . , p̄− 1
T

(2)
00 · · · T

(2)
0(n̄−1)

...
. . .

...

T
(2)
(n̄−1)0

· · · T(2)
(n̄−1)(n̄−1)

 :=

A×2

(
X̄20 · · · X̄2(n̄−1)

)
2bCn

3 p̄ bCn
2

for ̄1 = 0, . . . , ̄2
T

(1)
0
...

T
(1)
n̄−1

 :=


T

(2)
00 · · · T

(2)
0(n̄−1)

...
. . .

...

T
(2)
(n̄−1)0

· · · T(2)
(n̄−1)(n̄−1)

 2b2Cn
2

p̄(p̄ + 1)/2
=(p̄ + 1

2

) b2Cn

×1

(
X̄10 · · · X̄1(n̄−1)

)
for ̄0 = 0, . . . , ̄1

C̄0 ̄1 ̄2 :=
T

(1)
0
...

T
(1)
n̄−1

×0

(
X̄00 · · · X̄0(n̄−1)

)
2b3Cn

p̄(p̄ + 1)(p̄ + 2)

6
=(p̄ + 2

3

)
endfor

endfor
endfor

Total Cost:
2∑

d=0

(
2bd+1

C
n3−d

(p̄ + d

d + 1

))
≈ 2pn3 + p2n2 +

p3n

3
flops

Total temporary storage: bCn
2 + b2Cn =

1∑
d=0

(
bd+1
C

n2−d
)

entries

Fig. 3.4. Algorithm-by-blocks for computing [A;X,X,X]. The algorithm assumes that C is
partitioned into blocks of size bC × bC × bC, with p̄ = dp/bCe.

7

symmetric tensor as is C by virtue of the operation applied to A. Now,

γj0j1j2 = A×0 x̂
T
j0 ×1 x̂

T
j1 ×2 x̂

T
j2 =

n−1∑
i0=0

(A×1 x̂
T
j1 ×2 x̂

T
j2)i0 ×0 χj0i0

=

n−1∑
i0=0

(

n−1∑
i1=0

(A×2 x̂
T
j2)i1 ×1 χj1i1)i0 ×0 χj0i0

=

n−1∑
i2=0

n−1∑
i1=0

n−1∑
i0=0

αi0i1i2χj0i0χj1i1χj2i2 .

4.2. Simple algorithms. A naive algorithm is given in Figure 3.1 (middle-left).
The cheaper algorithm to its right is motivated by

A×0 X×1 X×2 X = A×0

 x̂T
0
...

x̂T
p−1

×1

 x̂T
0
...

x̂T
p−1

×2

 x̂T
0
...

x̂T
p−1



=
(
T

(2)
0 · · · T(2)

p−1

)
︸ ︷︷ ︸

T(2)

×0

 x̂T
0
...

x̂T
p−1

×1

 x̂T
0
...

x̂T
p−1



=


t
(1)
00 · · · t

(1)
0(p−1)

...
. . .

...

t
(1)
(p−1)0 · · · t

(1)
(p−1)(p−1)


︸ ︷︷ ︸

T(1)

×0

 x̂T
0
...

x̂T
p−1

 ,

where T
(2)
i2

= A ×2 x̂T
i2 , t

(1)
i1i2

= T
(2)
i2
×1 x̂T

i1 = A ×2 x̂T
i2 ×1 x̂T

i1 , and T
(2)
i2
∈ Rn×n,

t
(1)
i1i2
∈ Rn, x̂T

j ∈ R1×n .

Although it appears T(2) is a vector (oriented across the page) of matrices, it is

actually a vector (oriented into the page) of matrices (each T
(2)
i2

should be viewed

a matrix oriented first down and then across the page). Similarly, T(1) should be
viewed as a matrix (first oriented into the page, then across the page) of vectors

(each t
(1)
i1i2

should be viewed as a vector oriented down the page). This is a result of
the mode-multiplication and is an aspect that is difficult to represent on paper.

This algorithm requires p(2n3 + p(2n2 + 2pn)) = 2pn3 + 2p2n2 + 2p3n flops at the
expense of requiring workspace for a matrix T of size p× n and vector t of length n.

4.3. Blocked Compact Symmetric Storage (BCSS). In the matrix case
(Section 3), we described BCSS, which stores only the blocks in the upper triangular
part of the matrix. The storage scheme used in the 3-way case is analogous to the
matrix case; the difference is that instead of storing blocks belonging to a 2-way upper
triangle, we must store the blocks in the “upper triangular” region of a 3-way tensor.
This region is comprised of all indices (i0, i1, i2) where i0 ≤ i1 ≤ i2. For lack of a
better term, we refer to this as upper hypertriangle of the tensor.

Similar to how we extended the notion of the upper triangular region of a 3-
way tensor, we must extend the notion of a block to three dimensions. Instead of a

8

Compact (Minimum) Blocked Compact (BCSS) Dense

m = 2
(n+ 1)n

2
=

(
n+ 1

2

)
b2A

(
n̄+ 1

2

)
n2

m = 3

(
n+ 2

3

)
b3A

(
n̄+ 2

3

)
n3

m = d

(
n+ d− 1

d

)
bdA

(
n̄+ d− 1

d

)
nd

Fig. 4.1. Storage requirements for a tensor A under different storage schemes.

block being a two-dimensional submatrix, a block for 3-way tensors becomes a 3-way
subtensor. Partition tensor A ∈ R[3,n] into cubical blocks of size bA × bA × bA:

A::0 =


A000 A010 · · · A0(n̄−1)0

A100 A110 · · · A1(n̄−1)0

...
...

. . .
...

A(n̄−1)00 A(n̄−1)10 · · ·A(n̄−1)(n̄−1)0

 , · · · ,

A::(n̄−1) =


A00(n̄−1) A01(n̄−1) · · · A0(n̄−1)(n̄−1)

A10(n̄−1) A11(n̄−1) · · · A1(n̄−1)(n̄−1)

...
...

. . .
...

A(n̄−1)0(n̄−1) A(n̄−1)1(n̄−1) · · ·A(n̄−1)(n̄−1)(n̄−1)

 ,

where Aı̄0 ı̄1 ı̄2 is bA × bA × bA (except, possibly, the fringe blocks) and n̄ = dn/bAe.
These blocks are stored using some conventional method and the blocks lying out-
side the upper hypertriangular region are not stored. Once again, we will not take
advantage of any symmetry within blocks (blocks with ı̄0 = ı̄1, ı̄0 = ı̄2, or ı̄1 = ı̄2) to
simplify the access pattern when computing with these blocks.

Summarized in Figure 4.1, we see that while storing only the upper hypertri-

angular elements of the tensor A requires

(
n+ 2

3

)
storage, one has to now store

b3A

(
n̄+ 2

3

)
elements. However, since

(
n̄+ 2

3

)
b3A ≈

n̄3

3!
b3A =

n3

6
, we achieve a sav-

ings of approximately a factor 6 (if n̄ is large enough) relative to storing all elements.
Once again, we can apply the same storage method to C for additional savings. What
we have described is the obvious extension to BCSS, which is what we will call it for
higher order tensors as well.

Blocks for which the index criteria ı̄0 = ı̄1 = ı̄2 is NOT met yet still contain
some symmetry are referred to as partially-symmetric blocks. Taking advantage of
partial-symmetry in blocks is left for future research.

4.4. Algorithm-by-blocks. We now discuss an algorithm-by-blocks for the 3-
way case. Partition C and A into b3C and b3A blocks, respectively, and partition X
into bC × bA blocks. Then, extending the insights we gained from the matrix case,
C := [A;X,X,X] means that

C̄0 ̄1 ̄2 =

n̄−1∑
ı̄0=0

n̄−1∑
ı̄1=0

n̄−1∑
ı̄2=0

Aı̄0 ı̄1 ı̄2 ×0 X̄0 ı̄0 ×1 X̄1 ı̄1 ×2 X̄2 ı̄2

=

n̄−1∑
ı̄0=0

n̄−1∑
ı̄1=0

n̄−1∑
ı̄2=0

[Aı̄0 ı̄1 ı̄2 ;X̄0 ı̄0 ,X̄1 ı̄1 ,X̄2 ı̄2].

9

This yields the algorithm in Figure 3.4, in which an analysis of its cost is also given.
This algorithm avoids redundant computation, except for within blocks of C which
are symmetric or partially-symmetric (̄0 = ̄1 or ̄1 = ̄2 or ̄0 = ̄2). The algorithm

now requires bCn
2 + b2Cn extra storage (for T(2) and T(1), respectively), in addition

to the storage for C and A.

5. The m-way Case. We now generalize to tensors C and A of any order.

5.1. The operation for order-m tensors. Letting m be any non-negative
integer value yields C := [A;X,X, · · · ,X] where A ∈ R[m,n], C ∈ R[m,p], and
[A;X,X, · · ·X] = A×0 X×1 X×2 · · · ×m−1 X. In our discussion, A is a symmetric
tensor as is C by virtue of the operation applied to A.

Let γj0j1···jm−1
denote the (j0, j1, . . . , jm−1) element of the order-m tensor C.

Then, by simple extension, we find that

γj0j1···jm−1
= A×0 x̂

T
j0 ×1 x̂

T
j1 ×2 · · · ×m−1 x̂

T
jm−1

=

n−1∑
im−1=0

· · ·
n−1∑
i0=0

αi0i1···im−1χj0i0χj1i1 · · ·χjm−1im−1 .

5.2. Simple algorithms. A naive algorithm with a cost of (m+ 1)pmnm flops
is now given in Figure 3.1 (bottom-left). By comparing the loop structure of the naive
algorithms in the 2-way and 3-way cases, the pattern for a cheaper algorithm (one
which reduces flops) in the m-way case should become obvious. Extending the cheaper
algorithm in the 3-way case suggests the algorithm given in Figure 3.1 (bottom-right),
This algorithm requires

p(2n3 + p(2n2 + 2pn)) = 2pnm + 2p2nm−1 + · · · 2pm−1n = 2

m−1∑
i=0

pi+1nm−i flops

at the expense of requiring workspace for tensors of order 1 through m− 1.

5.3. Blocked Compact Symmetric Storage (BCSS). We now further ex-
tend BCSS for the general m-way case. The upper hypertriangular region now con-
tains all indices (i0, i1, . . . , im−1) where i0 ≤ i1 ≤ . . . ≤ im−1. Using the 3-way case
as a guide, one can envision by extrapolation how a block partitioned order-m tensor
looks. The tensor A ∈ R[m,n] is partitioned into hyper-cubical blocks of size bmA. The
blocks lying outside the upper hypertriangular region are not stored. Once again, we
will not take advantage of symmetry within blocks.

Summarized in Figure 4.1 while storing only the upper hypertriangular elements

of the tensor A requires

(
n+m− 1

m

)
storage, one has to now store

(
n̄+m− 1

m

)
bmA

elements which potentially achieves a savings factor of m! (if n̄ is large enough).

Although the approximation

(
n̄+m− 1

m

)
bmA ≈

nm

m!
is used, the lower-order

terms have a significant effect on the actual storage savings factor. Examining Fig-
ure 5.1, we see that as we increase m, we require a significantly larger n̄ to have the
actual storage savings factor approach the theoretical factor. While this figure only
shows the results for a particular value of bA, the effect applies to all values of bA.

5.4. Algorithm-by-blocks. Given that C and A are going to be stored us-
ing BCSS, we now need to discuss how to compute with these blocks. Assume the

10

0 10 20 30 40 50 60 70
blocked-tensor dimension (n̄)

100

101

102

M
em

or
y

(d
en

se
)/

M
em

or
y

(B
C

S
S

ac
tu

al
)

m=2
m=3
m=4
m=5

Fig. 5.1. Actual storage savings of BCSS on A

Algorithm Ops Total # of Temp.
(flops) times executed storage

for ̄m−1 = 0, . . . , p̄− 1

T(m−1) := A×m−1

(
X̄m−10 · · · X̄m−1(n̄−1)

)
2bCn

m
(p̄

1

)
bCn

m−1

. . .
...

...
...

for ̄1 = 0, . . . , ̄2

T(1) := T(2) ×1

(
X̄10 · · · X̄1(n̄−1)

)
2bm−1

C
n2

(p̄ + m− 2

m− 1

)
bm−1
C

n

for ̄0 = 0, . . . , ̄1
C̄0 ̄1···̄m−1 :=

T(1) ×0

(
X̄00 · · · X̄0(n̄−1)

)
=

T
(1)
0
...

T
(1)
n̄−1

×0

(
X̄00 · · · X̄0(n̄−1)

)
2bmC n

(p̄ + m− 1

m

)
endfor

endfor

. .
.

endfor

Total Cost:

m−1∑
d=0

(
2bd+1

C
nm−d

(p̄ + d

d + 1

))
flops

Total additional storage:

m−2∑
d=0

(
bd+1
C

nm−1−d
)

floats

Fig. 5.2. Algorithm-by-blocks for computing C := [A;X, · · · ,X]. The algorithm assumes that
C is partitioned into blocks of size bmC , with p̄ = dp/bCe.

partioning discussed above, with an obvious indexing into the blocks. Now,

C̄0 ̄1···̄m−1
=

n̄−1∑
ı̄0=0

· · ·
n̄−1∑

ı̄m−1=0

Aı̄0 ı̄1···̄ım−1
×0 X̄0 ı̄0 ×1 X̄1 ı̄1 ×2 · · · ×m−1 X̄m−1 ı̄m−1

=

n̄−1∑
ı̄0=0

· · ·
n̄−1∑

ı̄m−1=0

[Aı̄0 ı̄1···̄ım−1 ;X̄0 ı̄0 ,X̄1 ı̄1 , · · · ,X̄m−1 ı̄m−1].

11

C A T(m−1)

Memory (in floats)

(
p̄+m− 1

m

)
bmC

≈ p̄m

m!
bmC =

pm

m!

(
n̄+m− 1

m

)
bmA

≈ n̄m

m!
bmA =

nm

m!

nm−1bC

Fig. 5.3. Memory requirements for various objects used.

This yields the algorithm given in Figure 5.2, which avoids much redundant com-
putation, except for within blocks of C which are symmetric or partially-symmetric
(̄i = ̄k and i 6= k).

5.5. Memory requirements. The algorithm described in Figure 5.2 utilizes a
set of temporaries. At its worst, the sttsm operation acting on a tensor A ∈ R[m,n]

forms a temporary T(m−1) with n(m−1)×bC entries ∗ for a chosen block dimension bC.
The algorithm requires additional temporaries T(m−2), · · · ,T(1); however, these are
significantly smaller than T(m−1) and therefore we ignore their space requirements in
this analysis. We store A with BCSS with block size bA and we store all elements
of T(m−1), · · · ,T(1). There may be partial symmetries in T(m−1), · · · ,T(1), but we
do not take advantage of these here. The storage requirements are then given in

Figure 5.3 where we use the approximation

(
n+m− 1

m

)
≈ nm

m!
when m� n.

It is interesting to ask the question how parameters have to change with m,
as m increases, in order to maintain a constant fraction of space required for the
temporaries. For example, if we wish to keep memory required for T(m−1) constant
relative to the memory required for A, then the fraction

nm−1bC(
n̄+m−1

m

)
bmA
≈ nm−1bC

nm

m!

=
bCm!

n

must be kept approximately constant. Hence, if n is constant and m increases, bC
must be chosen inversely proportional to m!. This is disconcerting, because the larger
bC, the less benefit one derives from BCSS. On the other hand, if we look at this more
optimistically, and allow for a fraction of the dense storage for the workspace, then

nm−1bC
nm

=
bC
n
.

and bC can be kept constant as m increases.
Because we are storing symmetric tensors hierarchically, in practice, we require

additional storage for meta-data (implementation-specific data that is unrelated to
underlying mathematics) associated with each block of the tensors we store with
BCSS. Although this does impact the overall storage requirement, as this is an im-
plementation detail we do not thoroughly discuss it here. The impact of meta-data
storage on the proposed algorithm is discussed in Appendix B and is shown to be
minimal.

5.6. Computational cost. In Figure 5.2, an analysis of the computational cost
of computing intermediate results is given, as well as the overall cost. Notice that

∗T(m−1) is an m-way tensor where each mode is of dimension n except the last which is of
dimension bC

12

if the algorithm did not take advantage of symmetry, the range for each nested loop
becomes 0, . . . , p̄−1, meaning that each nested loop is executed p̄ times, and the total
cost becomes

m−1∑
d=0

(
2bd+1

C nm−dp̄d+1
)

=

m−1∑
d=0

(
2nm−dpd+1

)
flops.

A simple formula for the speedup achieved by taking advantage of symmetry is non-
trivial to establish in general from the formula in Figure 5.2 and the above formula.
However, when d� p̄ we find that∑m−1

d=0 2nm−dpd+1∑m−1
d=0 2bd+1

C nm−d
(
p̄+d
d+1

) ≈ ∑m−1
d=0 nm−dpd+1∑m−1

d=0 bd+1
C nm−d p̄d+1

(d+1)!

=

∑m−1
d=0 nm−dpd+1∑m−1
d=0 nm−d pd+1

(d+1)!

(and, if n = p,) =

∑m−1
d=0 nm+1∑m−1
d=0

nm+1

(d+1)!

=
m∑m−1

d=0
1

(d+1)!

.

Since 1 ≤
m−1∑
d=0

1

(d+ 1)!
<

∞∑
d=0

1

(d+ 1)!
= e− 1 we establish that

0.58m <
m

e− 1
<

m∑m−1
d=0

1
(d+1)!︸ ︷︷ ︸

approximate speedup
from exploiting symmetry
when n = p and m� p̄

≤ m.

As the above shows, if we take advantage of symmetry when applying the sttsm

operation to an order-m tensor, we can reduce the number of required flops by a factor
between 0.58m and m over the approach examined which does not take advantage of
symmetry.

5.7. Permutation overhead. Tensor computations are generally implemented
by a sequence of permutations of the data in the input tensor A, interleaved with
calls to a matrix-matrix multiplication implemented by a call to the BLAS routine
dgemm, details of which can be found in Appendix A. These permutations constitute
a nontrivial overhead, as we will discuss now.

If one does NOT take advantage of symmetry, then a series of exactly m tensor-
matrix-multiply operations are required to be performed on A, each resizing a single
mode at a time. This means the cost associated with permutations for the dense case
is (

1 + 2
p

n

)m−1∑
d=0

pdnm−d memory operations (memops).

When BCSS is used, the permutations and multiplications happen for each tensor
computation with a block. Figure 5.4 presents an analysis of the cost of permuting
data for each tensor-matrix-multiply operation, as well as the total cost of performing
permutations of the data. We see that the proposed algorithm-by-blocks requires
significantly more memops to perform the permutations since each block of A is

13

Algorithm Permute ops Total # of
(in mem ops) times executed

for ̄m−1 = 0, . . . , p̄− 1

T(m−1) :=

A×m−1

(
X̄m−10 · · · X̄m−1(n̄−1)

)
nm + 2bCn

m−1

(
p̄

1

)
. . .

...
...

for ̄1 = 0, . . . , ̄2

T(1) := T(2) ×1

(
X̄10 · · · X̄1(n̄−1)

)
bm−2
C n2 + 2bm−1

C n

(
p̄+m− 2

m− 1

)
for ̄0 = 0, . . . , ̄1

C̄0 ̄1···̄m−1 :=

T(1) ×0

(
X̄00 · · · X̄0(n̄−1)

)
bm−1
C n+ 2bmC

(
p̄+m− 1

m

)
endfor

endfor

. .
.

endfor

Total Cost:

(
1 + 2

bC
n

)m−1∑
d=0

bdCn
m−d

(
p̄+ d

d+ 1

)
mem ops

Fig. 5.4. Algorithm-by-blocks for computing C := [A;X, · · · ,X]. The algorithm assumes that
C is partitioned into blocks of size bmC , with p̄ = dp/bCe.

permuted

(
p̄+ d

d+ 1

)
times. The required cost becomes

(
1 + 2 p

n

)∑m−1
d=0 pdnm−d(

1 + 2 bC
n

)∑m−1
d=0 bdCn

m−d
(
p̄+d
d+1

) ≈ (
1 + 2 p

n

)∑m−1
d=0 pdnm−d(

1 + 2 bC
n

)∑m−1
d=0 bdCn

m−d p̄d+1

(d+1)!

(if, further, n = p) =
3
∑m−1

d=0 nm(
1 + 2 bC

n

)∑m−1
d=0

nmp̄
(d+1)!

=
3m

(p̄+ 2)
∑m−1

d=0
1

(d+1)!

memops.

This yields

1.74m

(p̄+ 2)
<

3m

(p̄+ 2)(e− 1)
<

3m

(p̄+ 2)
∑m−1

d=0
1

(d+1)!︸ ︷︷ ︸
approximate speedup

from exploiting symmetry
when n = p and m� p̄

≤ 3m

(p̄+ 2)
.

As the above shows, if p̄ is chosen too large, the algorithm will require more memops
in the form of permutations, unless m is scaled accordingly. However, m is typically
defined by the problem and therefore is not adjustable.

We can mitigate the permutation overhead by adjusting bC. For example, by
letting p̄ = 2 (bC = dp/2e), we are able to take advantage of symmetry in C for

14

0 100 200 300 400 500 600 700 800

103
104
105
106
107
108
109

1010

M
e
m

o
ry

 u
sa

g
e
 (

G
ig

a
b
y
te

s)

m=2
m=3
m=4
m=5

0 100 200 300 400 500 600 700 800
tensor dimension (n=p)

100

101

102

103

D
e
n
se

 /
 B

C
S
S

0 100 200 300 400 500 600 700 800
104
106
108

1010
1012
1014
1016
1018

Fl
o
a
ti

n
g
 p

o
in

t
o
p
s

(f
lo

p
s)

0 100 200 300 400 500 600 700 800
tensor dimension (n=p)

1.0

1.5

2.0

2.5

3.0
D

e
n
se

 /
 B

C
S
S

0 100 200 300 400 500 600 700 800
102

104

106

108

1010

1012

1014

1016

P
e
rm

u
te

 o
p
s

(m
e
m

o
p
s)

0 100 200 300 400 500 600 700 800
tensor dimension (n=p)

10-2

10-1

100

101

D
e
n
se

 /
 B

C
S
S

Fig. 5.5. Comparison of dense to BCSS algorithms. Solid and dashed lines correspond to dense
and BCSS, respectively. From left to right: storage requirements; cost from computation (flops); cost
from permutations (memops). For these graphs bA = bC = 8.

0 100 200 300 400 500 600 700 800

103
104
105
106
107
108
109

1010

M
e
m

o
ry

 u
sa

g
e
 (

G
ig

a
b
y
te

s)

m=2
m=3
m=4
m=5

0 100 200 300 400 500 600 700 800
tensor dimension (n=p)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
e
n
se

 /
 B

C
S
S

0 100 200 300 400 500 600 700 800
104
106
108

1010
1012
1014
1016
1018

Fl
o
a
ti

n
g
 p

o
in

t
o
p
s

(f
lo

p
s)

0 100 200 300 400 500 600 700 800
tensor dimension (n=p)

1.0

1.2

1.4

1.6

1.8

D
e
n
se

 /
 B

C
S
S

0 100 200 300 400 500 600 700 800
1021031041051061071081091010101110121013101410151016

P
e
rm

u
te

 o
p
s

(m
e
m

o
p
s)

0 100 200 300 400 500 600 700 800
tensor dimension (n=p)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

D
e
n
se

 /
 B

C
S
S

Fig. 5.6. Comparison of dense to BCSS algorithms. Solid and dashed lines correspond to dense
and BCSS, respectively. From left to right: storage requirements; cost from computation (flops); cost
from permutations (memops). Here n̄ = p̄ = 2.

storage reasons (as bC 6= 1) while limiting the increase in memops required (relative
to that encounted when dense storage is used) to

0.43m <
3m

4(e− 1)
<

3m

4
∑m−1

d=0
1

(d+1)!

≤ 0.75m.

It is tempting to discuss an optimal choice for C. However, it would be better to focus
on greatly reducing this overhead, as we will discuss in the conclusion.

5.8. Summary. Figures 5.5–5.6 illustrate the insights discussed in this section.
The (exact) formulae developed for storage, flops, and memops are used to compare
and contrast dense storage with BCSS.

15

In Figure 5.5, the top graphs report storage, flops, and memops (due to permu-
tations) as a function of tensor dimension (n), for different tensor orders (m), for
the case where the storage block size is relatively small (bA = bC = 8). The bottom
graphs report the same information, but as a ratio. The graphs illustrate that BCSS
dramatically reduces the required storage and the proposed algorithms reduce the
flops requirements for the sttsm operation, at the expense of additional memops due
to the encountered permutations.

In Figure 5.6 a similar analysis is given, but for the case where the block size is
half the tensor dimension (i.e., n̄ = p̄ = 2). It shows that the memops can be greatly
reduced by increasing the storage block dimensions, but this then adversely affects
the storage and computational benefits.

It would be tempting to discuss how to choose an optimal block dimension. How-
ever, the real issues is that the overhead of permutation should be reduced and/or
eliminated. Once that is achieved, in future research, the question of how to choose
the block size becomes relevant.

6. Experimental Results. In this section, we report on the performance at-
tained by an implementation of the discussed approach. It is important to keep in
mind that the current state of the art of tensor computations is first and foremost
concerned with reducing memory requirements so that reasonably large problems can
be executed. This is where taking advantage of symmetry is important. Second to
that is the desire to reduce the number of floating point operations to the minimum
required. Our algorithms perform the minimum number of floating point operation
(except for a lower order term that would result from taking advantage of partial
symmetry in the temporary results). Actually attaining high performance, like is
attained for dense matrix computations, is still relatively low priority compared to
these issues.

6.1. Target architecture. We report on experiments on a single core of a Dell
PowerEdge R900 server consisting of four six-core Intel Xeon 7400 processors and 96
GBytes of memory. Performance experiments were gathered under the GNU/Linux
2.6.18 operating system. Source code was compiled by the GNU C compiler, ver-
sion 4.1.2. All experiments were performed in double-precision floating-point arith-
metic on randomized real domain matrices. The implementations were linked to the
OpenBLAS 0.1.1 library [19, 28], a fork of the GotoBLAS2 implementation of the
BLAS [12, 11]. As noted, most time is spent in the permutations necessary to cast
computation in terms of the BLAS matrix-matrix multiplication routine dgemm. Thus,
the peak performance of the processor and the details of the performance attained by
the BLAS library are mostly irrelevant at this stage. The experiments merely show
that the new approach to storing matrices as well as the algorithm that takes advan-
tage of symmetry has promise, rather than making a statement about optimality of
the implementation. Much room for improvement remains.

6.2. Implementation. The implementation was coded in a style inspired by
the libflame library [29, 25]. An API similar to the FLASH API [17] for storing
matrices as matrices of blocks and implementing algorithm-by-blocks was defined and
implemented. Computations with the (tensor and matrix) blocks were implemented
as the discussed sequence of permutations interleaved with calls to the dgemm BLAS
kernel. No attempt was yet made to optimize these permutations. However, an
apples-to-apples comparison resulted from using the same sequence of permutations
and calls to dgemm for both the experiments that take advantage of symmetry and

16

2 3 4 5 6 7 8
tensor order (m)

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

e
x
e
cu

ti
o
n
 t

im
e
 (

s)

2 3 4 5 6 7 8
tensor order (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 d

e
n
se

2 3 4 5 6 7 8
tensor order (m)

0

1

2

3

4

5

6

7

8

M
e
m

o
ry

 (
D

e
n
se

)
/

M
e
m

o
ry

 (
A

lg
.) BCSS

DENSE

Fig. 6.1. Experimental results when n = p = 16, bA = bC = 8 and the tensor order, m,
is varied. For m = 8, storing A and C without taking advantage of symmetry requires too much
memory.

0 10 20 30 40 50 60 70 80
tensor dimension (n=p)

10-3

10-2

10-1

100

101

102

103

104

e
x
e
cu

ti
o
n
 t

im
e
 (

s)

0 10 20 30 40 50 60 70 80
tensor dimension (n=p)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 d

e
n
se

0 10 20 30 40 50 60 70 80
tensor dimension (n=p)

0

5

10

15

20

25

30

M
e
m

o
ry

 (
D

e
n
se

)
/

M
e
m

o
ry

 (
A

lg
.) BCSS

DENSE

Fig. 6.2. Experimental results when the order m = 5, bA = bC = 8 and the tensor dimensions
n = p are varied. For n = p = 72, storing A and C without taking advantage of symmetry requires
too much memory.

0 10 20 30 40 50 60 70
block dimension (bA = bC)

200

400

600

800

1000

1200

1400

ex
ec

ut
io

n
tim

e
(s

)

0 10 20 30 40 50 60 70
block dimension (bA = bC)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
pe

ed
up

re
la

tiv
e

to
de

ns
e

0 10 20 30 40 50 60 70
block dimension (bA = bC)

0

20

40

60

80

100

M
em

or
y

(D
en

se
)/

M
em

or
y

(A
lg

.) BCSS
DENSE

Fig. 6.3. Experimental results when the order m = 5, n = p = 64 and the block dimensions
bA = bC are varied.

those that store and compute with the tensor densely, ignoring symmetry.

6.3. Results. Figures 6.1–6.3 show results from executing our implementation
on the target architecture of the algorithms which do and do not take advantage of

17

0 10 20 30 40 50 60 70
block dimension (bA = bC)

2

3

4

5

6

7

C
om

pa
ct

co
m

pu
te

co
st

(fl
op

s)

1e11

0

1

2

3

4

5

6

7

8

Pe
rm

ut
e

co
m

pu
te

co
st

(m
em

op
s)

1e12

computation
permutation

Fig. 6.4. Comparison of computational cost to permutation cost where m = 5, n = p = 64 and
tensor block dimension (bA, bC) is varied. The solid line represents the number of flops (due to
computation) required for a given problem (left axis), and the dashed line represents the number of
memops (due to permutation) required for a given problem (right axis).

symmetry. The first is denoted a BCSS algorithm while the latter a dense algorithm.
All figures show comparisons of the execution time of each algorithm, the associated
speedup of the BCSS algorithm over the dense algorithm, and the estimated storage
savings factor of the BCSS algorithm.

For the experiments reported in Figure 6.1 we fix n, p, bA, bC, and vary the tensor
order m. The BCSS algorithm begins to outperform the dense algorithm after the
tensor order is equal to or greater than 4. This is due to the fact that at lower tensor
orders, the speedup of the BCSS algorithm is lower, and therefore any computational
overhead introduced due to our implementation of the BCSS algorithm is more pro-
nounced (increasing the execution time of the BCSS algorithm). Additionally, notice
that that BCSS allows larger problems to be solved; the dense algorithm was unable
to store the entire symmetric tensor when m = 8. We see that once the problem-size
becomes larger (m = 7), the speedup of the BCSS algorithm over the dense algorithm
decreases. This is surprising since, according to the mathematics defining this opera-
tion, we would expect a continual increase in speedup (computational savings of the
BCSS algorithm is proportional to the order of the tensor). We believe this effect to
be due to an implementation detail that we plan to investigate in future work.

In Figure 6.2 we fix m, bA, and bC and vary the tensor dimensions n and p. We see
that the BCSS algorithm outperforms the dense algorithm and attains a noticeable
speedup. The speedup appears to level out as the tensor dimension increases which
is unexpected. We will discuss this effect later as it appears in other experiments.

In Figure 6.3 we fix m, n, and p, and vary the block sizes bA and bC. The right-
most point on the axis corresponds to the dense case (as bA = n = bC = p) and
the left-most point corresponds to the fully-compact case (where only unique entries
are stored). There now is a range of block dimensions for which the BCSS algorithm
outperforms the dense algorithm. Similar to previous result, as we increase the block
size, our relative speedup decreases which we now discuss.

In Figures 6.2–6.3, we saw that as tensor dimension or block dimension increased
the relative speedup of the BCSS algorithm over the dense algorithm lessened/leveled
out. We believe this is due to a balance between the cost of permutations and the

18

cost of computation. In Figure 6.4 we illustrate (with predicted flop and memop
counts) that if we pick a small block dimension, we dramatically increase the memops
due to permutations while dramatically decreasing the computational cost. If instead
we pick a large block dimension, we dramatically lower the permutation cost, while
increasing the computational cost. Although this plot only shows one case, in general
this tension between memops due to permutations and flops due to computation
exists. In the large block dimension regime we are performing fewer permutations
than computations which is beneficial since memops are significantly more expensive
than flops.

We believe that the effect of the small block dimension region (which dramatically
increases memops) explains the dropping/leveling off of relative speedup of Figure 6.2
where the tensor dimension becomes large while the block dimension remains constant
and thus the relative block dimension becomes small. Further, we believe that the
effect of the large block dimension region which dramatically increases flops explains
the dropping/leveling off of relative speedup of Figure 6.3 where the block dimension
increases while the tensor dimension remains constant (the block dimension becomes
relatively large). This, and other effects related to block size, will be studied further
in future research.

7. Conclusion and Future Work. We have presented storage by blocks, BCSS,
for tensors and shown how this can be used to compactly store symmetric tensors.
The benefits were demonstrated with an implementation of a new algorithm for the
change-of-basis (sttsm) operation. Theoretical and practical results showed that both
the storage and computational requirements were reduced relative to storing the ten-
sors densely and computing without taking advantage of symmetry.

This initial study has exposed many new research opportunities, which we believe
to be the real contribution of this paper. We finish by discussing some of these
opportunities.

Optimizing permutations. In our work, we made absolutely no attempt to opti-
mize the permutation operations. Without doubt, a careful study of how to organize
these permutations will greatly benefit performance. It is likely that the current im-
plementation not only causes unnecessary cache misses, but also a great number of
Translation Lookaside Buffer (TLB) misses [12], which cause the core to stall for a
hundred or more cycles.

Optimized kernels/avoiding permutation. A better way to mitigate the permuta-
tions is to avoid them as much as possible. If n = p, the sttsm operation performs
O(nm+1) operations on O(nm) data. This exposes plenty of opportunity to optimize
this kernel much like dgemm, which performs O(n3) computation on O(n2) data, is
optimized. For other tensor operations, the ratio is even more favorable.

We are developing a BLAS-like library, BLIS [26], that allows matrix operations
with matrices that have both a row and a column stride, as opposed to the traditional
column-major order supported by the BLAS. This means that computation with a
planar slice in a tensor can be passed into the BLIS matrix-matrix multiplication
routine, avoiding the explicit permutations that must now be performed before calling
dgemm. How to rewrite the computations with blocks in terms of BLIS, and studying
the performance benefits, is a future topic of research.

One can envision instead creating a BLAS-like library for the tensor operations we
perform with blocks. One alternative for this is to apply the techniques developed as
part of the PHiPAC [7], TCE, SPIRAL [21], or ATLAS [27] projects to the problem
of how to optimize computations with blocks. This should be a simpler problem

19

than optimizing the complete tensor contraction problems that, for example, TCE
targets now, since the sizes of the operands are restricted. The alternative is to create
microkernels for tensor computations, similar to the microkernels that BLIS defines
and exploits for matrix computations, and to use these to build a high-performance
tensor library that in turn can then be used for the computations with tensor blocks.

Algorithmic variants for the sttsm operation. For matrices, there is a second
algorithmic variant for computing C := XAXT . Partition A by rows and X by
columns:

A =

 âT
0
...

âT
n−1

 and X =
(
x0 · · · xn−1

)
.

Then

C = XAXT =
(
x0 · · · xn−1

) âT
0
...

âT
n−1

XT = x0(âT
0 X) + · · ·xn−1(âT

n−1X).

We suspect that this insight can be extended to the sttsm operation, yielding a
new set of algorithm-by-blocks that will have different storage and computational
characteristics.

Extending the FLAME methodology to multi-linear operations. In this paper, we
took an algorithm that was systematically derived with the FLAME methodology for
the matrix case and then extended it to the equivalent tensor computation. Ideally,
we would derive algorithms directly from the specification of the tensor computation,
using a similar methodology. This requires a careful consideration of how to extend
the FLAME notation for expressing matrix algorithms, as well as how to then use
that notation to systematically derive algorithms.

Partial symmetry: storage and computation. The presented algorithm, which
takes advantage of symmetry for computational purposes only, does so with respect
to the final output C. However, the described algorithm forms temporaries which
contain partial-symmetries of which the proposed algorithm does not take advantage.
Therefore, unnecessary storage is required and unnecessary computation is being per-
formed when forming temporaries. Moreover, as numerous temporaries are formed,
one can argue that taking advantage of partial symmetries in temporaries is almost
as important as taking advantage of symmetry in the input and output tensors.

So far, we have only spoken about exploiting partial symmetries at the block
level. However, each block may contain partial-symmetries which can be exploited
for computational or storage reasons. It is difficult to say whether taking advantage
of partial-symmetries within each block is advantageous, but it should be examined.

Multithreaded parallel implementation. Multithreaded parallelism can be accom-
plished in a number of ways.

• The code can be linked to a multithreaded implementation of the BLAS,
thus attaining parallelism within the dgemm call. This would require one to
hand-parallelize the permutations.

• Parallelism can be achieved by scheduling the operations with blocks to
threads much like our SuperMatrix [22] runtime does for the libflame li-
brary, or PLASMA [1] does for its tiled algorithms.

20

We did not yet pursue this because at the moment the permutations are a bottleneck
that, likely, consumes all available memory bandwidth. As a result, parallelization
does not make sense until the cost of the permutations is mitigated.

Exploiting accelerators. In a number of papers [18, 14], we and others have shown
how the algorithm-by-blocks (tiled algorithm) approach, when combined with a run-
time system, can exploit (multiple) GPUs and other accelerators. These techniques
can be naturally extended to accommodate the algorithm-by-blocks for tensor com-
putations.

Distributed parallel implementation. Once we understand how to derive sequential
algorithms, it becomes possible to consider distributed memory parallel implementa-
tion. It may be that our insights can be incorporated into the Cyclops Tensor Frame-
work [23], or that we build on our own experience with distributed memory libraries
for dense matrix computations, the PLAPACK [24] and Elemental [20] libraries, to
develop a new distributed memory tensor library.

General multi-linear library. The ultimate question is, of course, how the insights
in this paper and future ones can be extended to a general, high-performance multi-
linear library, for all platforms.

Acknowledgments. This work was partially sponsored by NSF grant OCI-
1148125. This work was supported by the Applied Mathematics program at the
U.S. Department of Energy. Sandia National Laboratories is a multi-program labo-
ratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Any opinions, findings and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation (NSF).

REFERENCES

[1] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek,
and S. Tomov. Numerical linear algebra on emerging architectures: The PLASMA and
MAGMA projects. volume 180, 2009.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz,
S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide
(third ed.). SIAM, 1999.

[3] Brett W. Bader and Tamara G. Kolda. Algorithm 862: MATLAB tensor classes for fast
algorithm prototyping. ACM Transactions on Mathematical Software, 32(4):635–653, De-
cember 2006.

[4] Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version 2.5. Available online,
January 2012.

[5] Grey Ballard, Tamara G. Kolda, and Todd Plantenga. Efficiently computing tensor eigenvalues
on a GPU. In IPDPSW’11: Proceedings of the 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and PhD Forum, pages 1340–1348. IEEE
Computer Society, May 2011.

[6] G. Baumgartner, A. Auer, D.E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao,
R.J. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen, R.M.
Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov. Synthesis of high-performance
parallel programs for a class of ab initio quantum chemistry models. In Proceedings of the
IEEE, volume 93, pages 276–292, 2005.

[7] J. Bilmes, K. Asanovic, C.W. Chin, and J. Demmel. Optimizing matrix multiply using PHiPAC:
a portable, high-performance, ANSI C coding methodology. In Proceedings of the Inter-
national Conference on Supercomputing. ACM SIGARC, July 1997.

[8] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra
library for distributed memory concurrent computers. In Proceedings of the Fourth Sympo-

21

sium on the Frontiers of Massively Parallel Computation, pages 120–127. IEEE Comput.
Soc. Press, 1992.

[9] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[10] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended
set of FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1–17,
March 1988.

[11] Kazushige Goto and Robert van de Geijn. High-performance implementation of the level-3
BLAS. ACM Trans. Math. Soft., 35(1):1–14, 2008.

[12] Kazushige Goto and Robert A. van de Geijn. Anatomy of a high-performance matrix multipli-
cation. ACM Trans. Math. Soft., 34(3):12, May 2008. Article 12, 25 pages.

[13] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME:
Formal linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–455, Dec.
2001.

[14] Francisco D. Igual, Ernie Chan, Enrique S. Quintana-Ort, Gregorio Quintana-Ort, Robert A.
van de Geijn, and Field G. Van Zee. The flame approach: From dense linear algebra
algorithms to high-performance multi-accelerator implementations. Journal of Parallel
and Distributed Computing, 72(9):1134 – 1143, 2012. Accelerators for High-Performance
Computing.

[15] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51:455–
500, Jan. 2009.

[16] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms
for Fortran usage. ACM Trans. Math. Soft., 5(3):308–323, Sept. 1979.

[17] Tze Meng Low and Robert van de Geijn. An API for manipulating matrices stored by blocks.
FLAME Working Note #12 TR-2004-15, The University of Texas at Austin, Department
of Computer Sciences, May 2004.

[18] Mercedes Marqués, Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, and Robert van de
Geijn. Solving “large” dense matrix problems on multi-core processors and gpus. In
10th IEEE International Workshop on Parallel and Distributed Scientific and Engineering
Computing - PDSEC’09. Roma (Italia), 2009.

[19] http://xianyi.github.com/OpenBLAS/, 2012.
[20] Jack Poulson, Bryan Marker, Robert A. van de Geijn, Jeff R. Hammond, and Nichols A.

Romero. Elemental: A new framework for distributed memory dense matrix computations.
ACM Transactions on Mathematical Software, 39(2).

[21] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan W.
Singer, Jianxin Xiong, Franz Franchetti, Aca Gačić, Yevgen Voronenko, Kang Chen,
Robert W. Johnson, and Nick Rizzolo. SPIRAL: Code generation for DSP transforms.
Proceedings of the IEEE, 93(2), 2005. special issue on Program Generation, Optimization,
and Adaptation.

[22] Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. van de Geijn, Field G. Van Zee,
and Ernie Chan. Programming matrix algorithms-by-blocks for thread-level parallelism.
ACM Trans. Math. Softw., 36(3):14:1–14:26, July 2009.

[23] Edgar Solomonik, Jeff Hammond, and James Demmel. A preliminary analysis of Cyclops
Tensor Framework. Technical Report UCB/EECS-2012-29, EECS Department, University
of California, Berkeley, Mar 2012.

[24] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press,
1997.

[25] Field G. Van Zee, Ernie Chan, Robert van de Geijn, Enrique S. Quintana-Ort́ı, and Gregorio
Quintana-Ort́ı. The libflame library for dense matrix computations. IEEE Computation
in Science & Engineering, 11(6):56–62, 2009.

[26] Field G. Van Zee and Robert A. van de Geijn. FLAME Working Note #66. BLIS: A framework
for generating BLAS-like libraries. Technical Report TR-12-30, The University of Texas at
Austin, Department of Computer Sciences, Nov. 2012. submitted to ACM TOMS.

[27] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In
Proceedings of SC’98, 1998.

[28] Zhang Xianyi, Wang Qian, and Zhang Yunquan. Model-driven level 3 BLAS performance op-
timization on Loongson 3A processor. In IEEE 18th International Conference on Parallel
and Distributed Systems (ICPADS), 2012.

[29] Field G. Van Zee. libflame: The Complete Reference. www.lulu.com, 2009.

22

http://xianyi.github.com/OpenBLAS/

Appendix A. Casting Tensor-Matrix Multiplication to BLAS. Given a
tensor A ∈ RI0×···×Im−1 , a mode k, and a matrix B ∈ RJ×Ik , the result of mul-
tiplying B along the k-th mode of A is denoted by C = A ×k B, where C ∈
RI0×···×Ik−1×J×Ik+1×···×Im−1 and each element of C is defined as

Ci0···ik−1j0ik+1···im−1
=

Ik∑
ik=0

αi0···im−1
βj0ik .

This operation is typically computed by casting it as a matrix-matrix multiplication
for which high-performance implementations are available as part of the Basic Linear
Algebra Subprograms (BLAS) routine dgemm.

The problem viewing a higher-order tensor as a matrix is analogous to the problem
of viewing a matrix as a vector. We first describe this simpler problem and show how
it generalizes to objects of higher-dimension.

Matrices as vectors (and vice-versa). A matrix A ∈ Rm×n can be viewed as a
vector a ∈ RM where M = mn by assigning ai0+i1m = Ai0i1 . (This is analogous
to column-major order assignment of a matrix to memory.) This alternative view
does not change the relative order of the elements in the matrix, since it just logically
views them in a different way. We say that the two dimensions of A are merged or
“grouped” to form the single index of a.

Using the same approach, we can view a as A by assigning the elements of A
according to the mentioned equivalence. In this case, we are in effect viewing the
single index of a as two separate indices. We refer to this effect as a “splitting” of the
index of a.

Tensors as matrices (and vice-versa). A straightforward extension of grouping of
indices allows us to view higher-order tensors as matrices and (inversely) matrices as
higher-order tensors. The difference lies with the calculation used to assign elements
of the lower/higher-order tensor.

As an example, consider an order-4 tensor C ∈ RI0×I1×I2×I3 . We can view C as
a matrix C ∈ RJ0×J1 where J0 = I0 × I1 and J1 = I2 × I3. Because of this particular
grouping of indices, the elements as laid out in memory need not be rearranged (rela-
tive order of each element remains the same). This follows from the observation that
memory itself is a linear array (vector) and realizing that if C and C are both mapped
to a 1-dimensional vector using column-major order and its higher dimensional ex-
tension (which we will call dimensional order), both will be stored identically.

The need for permutation. If we wished to instead view our example
C ∈ RI0×I1×I2×I3 as a matrix C ∈ RJ0×J1 where, for instance, J0 = I1 and J1 =
I0×I2×I3, then this would require a rearrangement of the data since mapping C and
C to memory using dimensional order will not generally produce the same result for
both. This is a consequence of changing the relative order of indices in our mappings.

This rearrangement of data is what is referred to as a permutation of data. By
specifying an input tensor A ∈ RI0×···×Im−1 and the desired permutation of in-
dices of A, π, we define the transformation C = permute(A, π) that yields C ∈
RIπ0

×Iπ1
×···×Iπm−1 so that Ci′0···i′m−1

= Ai0···im−1
where i′ corresponds to the result of

applying the permutation π to i. The related operation ipermute inverts this transfo-

mation when supplied π so that C = ipermute(A, π) yields C ∈ R
I
π
−1
0
×I

π
−1
1
×···×I

π
−1
m−1

where Ci′0···i′m−1
= Ai0···im−1

where i′ corresponds to the result of applying the per-

mutation π−1 to i.

23

0 10 20 30 40 50 60 70
block dimension (bA)

103

104

105

106

107

108

109

1010

M
em

or
y

in
cl

ud
in

g
m

et
ad

at
a

m=2
m=3
m=4
m=5

0 10 20 30 40 50 60 70
block dimension (bA)

107

108

109

1010

1011

1012

1013

M
em

or
y

in
cl

ud
in

g
m

et
ad

at
a

k=1
k=32
k=256
k=1024

Fig. B.1. Left: Storage requirements of A ∈ R[m,64] as block dimension changes. Right: Storage
requirements of A ∈ R[5,64] for different choices for the meta-data stored per block, measured by k,
as block dimension changes.

Casting a tensor computation in terms of a matrix-matrix multiplication. We can
now show how the operation C = A×k B, where A ∈ RI0×···×Im−1 , B ∈ RJ×Ik , and
C ∈ RI0×···×Ik−1×J×Ik+1×···×Im−1 , can be cast as a matrix-matrix multiplication if the
tensors are appropriately permuted. The following describes the algorithm:

1. Permute: PA ← permute(A, {k, 0, . . . , k − 1, k + 1, . . . ,m− 1}).
2. Permute: PC ← permute(C, {k, 0, . . . , k − 1, k + 1, . . . ,m− 1}).
3. View tensor PA as matrix A: A ← PA, where A ∈ RIk×J1 and J1 =
I0 · · · Ik−1Ik+1 · · · Im−1.

4. View tensor PC as matrix C: C ← PC, where C ∈ RJ×J1 and J1 =
I0 · · · Ik−1Ik+1 · · · Im−1.

5. Compute matrix-matrix product: C := BA.
6. View matrix C as tensor PC: PC ← C,

where PC ∈ RJ×I0×···×Ik−1×Ik+1×···×Im−1 .
7. “Unpermute”: C← ipermute(PC, {k, 0, . . . , k − 1, k + 1, . . . ,m− 1}).

Step 5. can be implemented by a call to the BLAS routine dgemm, which is typically
highly optimized.

Appendix B. Design Details.

We now give a few details about the particular implementation of BCSS, and how
this impacts storage requirements. Notice that this is one choice for implementing
this storage scheme in practice. One can envision other options that, at the expense
of added complexity in the code, reduce the memory footprint.

BCSS views tensors hierarchically. At the top level, there is a tensor where
each element of that tensor is itself a tensor (block). Our way of implementing this
stores a description (meta-data) for a block in each element of the top-level tensor.
This meta-data adds to memory requirements. In our current implementation, the
top-level tensor of meta-data is itself a dense tensor. The meta-data in the upper
hypertriangular tensor describes stored blocks. The meta-data in the rest of the top-
level tensor reference the blocks that correspond to those in the upper hypertriangular

24

tensor (thus requiring an awareness of the permutation needed to take a stored block
and transform it). This design choice greatly simplifies our implementation (which
we hope to describe in a future paper). We will show that although the meta-data
can potentially require considerable space, this can be easily mitigated. We will use
A for example purposes.

Given A ∈ R[m,n] stored with BCSS with block dimension bA, we must store
meta-data for n̄m blocks where n̄ = dn/bAe. This means that the total cost of storing
A with BCSS is

Cstorage(A) = kn̄m + bmA

(
n̄+m− 1

m

)
floats,

k is a constant representing the amount of storage required for the meta-data asso-
ciated with one block, in floats. Obviously, this meta-data is of a different datatype,
but floats will be our unit.

There is a tradeoff between the cost for storing the meta-data and the actually
entries of A, parameterized by the blocksize bA:

• If bA = n, then we only require a minimal amount of memory for meta-data,
k floats, but must store all entries of A since there now is only one block, and
that block uses dense storage. We thus store slightly more than we would if
we stored the tensor without symmetry.

• If bA = 1, then n̄ = n and we must store meta-data for each element, meaning
we store much more data than if we just used a dense storage scheme.

Picking a block dimension somewhere between these two extremes results in a smaller
footprint overall. For example, if we choose a block dimension bA =

√
n, then n̄ =

√
n

and the total storage required to store A with BCSS is

Cstorage(A) = kn̄m + bmA

(
n̄+m− 1

m

)
= kn

m
2 + n

m
2

(
n
m
2 +m− 1

m

)
≈ kn

m
2 + n

m
2

(
n
m
2

m!

)
= n

m
2

(
k +

n
m
2

m!

)
floats,

which, provided that k � n
m
2

2
, is significantly smaller than the storage required for

the dense case (nm). This discussion suggests that a point exists that requires less
storage than the dense case (showing that BCSS is a feasible solution).

In Figure B.1, we illustrate that as long as we pick a block dimension that is
greater than 4, we avoid incurring extra costs due to meta-data storage. It should be
noted that changing the dimension of the tensors also has no effect on the minimum,
however if they are too small, then the dense storage scheme may be the minimal
storage scheme. Additionally, adjusting the order of tensors has no real effect on the
block dimension associated with minimal storage. However increasing the amount
of storage allotted for meta-data slowly shifts the optimal block dimension choice
towards the dense storage case.

25

